Examples using cosine rule
Example 1
You can use the cosine rule (If you can remember it – but why try) here it is anyway:
What is the length B to C in the following diagram?
Cosine rule is: `a^2=b^2+c^2-2bc\ cosA`
Redraw the diagram
Therefore `a^2=b^2+c^2-2bc\ cosA`
Becomes: `a^2=7^2+3^2-2times7times3cos35^@`
`a^2=49+8-42cos35^@`
`a^2=58-42cos35^@`
`a^2=58-34.4`
`a^2=23.6`
`a=sqrt 23.6`
`a=4.85cm`
Example 2
In the diagram below find `theta`
Cosine rule is: `a^2=b^2+c^2-2bc\ cosA`
Redraw the diagram
Rearrange the cosine rule:
`-cosA=(a^2-b^2-c^2)/(2bc)`
`-cosA=(4^2-4.2^2-6.9^2)/(2times4.2times6.9)`
`-cosA=(16-17.64-47.61)/57.96`
`-cosA=(-49.25)/57.96`
Swap sides to cancel out the negative
`49.25/57.96=cosA`
`0.849=cosA`
Answer: `A=31.89^@`