Common core division
Common core division is a way of dividing by using multiplication and subtraction instead. It subtracts in small chunks, in easy multiples like 2 or 10 or 100. You keep note of how many lots have been taken away to give the final answer.
Common core division – Take chunks away from the core.
Common core divison = Repeated subtraction
NOTE:
Using this method means there are many different ways to subtract chunks from the division and so no two solutions to the problem will be the same.
Example 1
`420div3`
`3` | `4` | `2` | `0` | ||||
`3` | `0` | `0` | `100` | ||||
`1` | `2` | `0` | |||||
`3` | `0` | `10` | |||||
`9` | `0` | ||||||
`3` | `0` | `10` | |||||
`6` | `0` | ||||||
`3` | `0` | `10` | |||||
`3` | `0` | ||||||
`3` | `0` | `10` | |||||
`0` | `140` |
To see every step broken down
Common core division step by step
Example 1
`420div3`
`3` | `4` | `2` | `0` | At first put the `3` in front of a division sign and the `420` inside just as the traditional method. | ||||||
`3` | `4` | `2` | `0` | But unlike the traditional method we subtract easy amounts in small chunks. Such as `3xx100` and keep a running total. | ||||||
`3xx100rArr` | `3` | `0` | `0` | `100` | ||||||
`3` | `4` | `2` | `0` | |||||||
Take away to give: |
`3` | `0` | `0` | `100` | ||||||
`1` | `2` | `0` | Take away the`300` from the `420` | |||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | Subtract `3xx10` and add `10` to the running total. | |||||||
`3xx10rArr` | `3` | `0` | `10` | |||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
Take away to give: |
`3` | `0` | `10` | |||||||
`9` | `0` | Take `30` away from the `120` | ||||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | Subtract `3xx10` again and add to the running total. | ||||||||
`3xx10rArr` | `3` | `0` | `10` | |||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | |||||||||
Take away to give: | `3` | `0` | `10` | |||||||
`6` | `0` | Take `30` away from `90` | ||||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`6` | `0` | Subtract `3xx10` again and add to the running total. | ||||||||
`3xx10rArr` | `3` | `0` | `10` | |||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`6` | `0` | |||||||||
Take away to give: | `3` | `0` | `10` | Take `30` away from `60` | ||||||
`3` | `0` | |||||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`6` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`3` | `0` | Subtract `3xx10` again and add to the running total. | ||||||||
`3xx10rArr` | `3` | `0` | `10` | |||||||
`3` | `4` | `2` | `0` | |||||||
`3` | `0` | `0` | `100` | |||||||
`1` | `2` | `0` | ||||||||
`3` | `0` | `10` | ||||||||
`9` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`6` | `0` | |||||||||
`3` | `0` | `10` | ||||||||
`3` | `0` | Now take away the final `30` leaving nothing. | ||||||||
Take away to give: | `3` | `0` | `10` | Then add up the running totals on the right. | ||||||
`0` | `140` | |||||||||
Answer: `420div3=140`
Answer: `420div3=140`
Example 2
`300div3`
`3` | `3` | `0` | `0` | ||||
`3` | `0` | `0` | `100` | ||||
`0` | `100` |
To see every step broken down
Common core division step by step
Example 2
`300div3`
`3` | `3` | `0` | `0` | At first put the `3` in front of a division sign and the `300` inside just as the traditional method. | ||||||
`3` | `3` | `0` | `0` | But unlike the traditional method we subtract easy amounts in small chunks, start with `3xx100=300` and keep a running total on the right. | ||||||
`3xx100rArr` | `3` | `0` | `0` | `100` | ||||||
`3` | `3` | `0` | `0` | |||||||
Take away to give: |
`3` | `0` | `0` | `100` | Now take away the remainder leaving nothing. So the running total is `100`. | |||||
`0` | `100` | |||||||||
Answer: `300div3=100`
Answer: `300div3=100`
Example 3
`3684div24`
`24` | `3` | `6` | `8` | `4` | ||||
`2` | `4` | `0` | `0` | `100` | ||||
`1` | `2` | `8` | `4` | |||||
`1` | `2` | `0` | `0` | `50` | ||||
`8` | `4` | |||||||
`4` | `8` | `2` | ||||||
`3` | `6` | |||||||
`2` | `4` | `1` | ||||||
`1` | `2` | `153` |
To see every step broken down
Common core division step by step
Example 3
`3684div24`
`24` | `3` | `6` | `8` | `4` | At first put the `24` in front of a division sign and the `3684` inside just as the traditional method | ||||||
`24` | `3` | `6` | `8` | `4` | But unlike the traditional method we subtract easy amounts in small chunks. Start with `24xx100=2400` and keep a running total on the right | ||||||
`100xx24rArr` | `2` | `4` | `0` | `0` | `100` | ||||||
`24` | `3` | `6` | `8` | `4` | |||||||
Take away to give: |
`2` | `4` | `0` | `0` | `100` | Take `2400` from `3684`. | |||||
`1` | `2` | `8` | `4` | ||||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | Subtract `50xx24` and add `50` to the running total. | |||||||
`50xx24rArr` | `1` | `2` | `0` | `0` | `50` | ||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | ||||||||
Take away to give: |
`1` | `2` | `0` | `0` | `50` | Take `1200` from `1284`. | |||||
`8` | `4` | ||||||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | ||||||||
`1` | `2` | `0` | `0` | `50` | |||||||
`8` | `4` | Subtract `2xx24` and add `2` to the running total. | |||||||||
`2xx24rArr` | `4` | `8` | `2` | ||||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | ||||||||
`1` | `2` | `0` | `0` | `50` | |||||||
`8` | `4` | ||||||||||
Take away to give: |
`4` | `8` | `2` | ||||||||
`3` | `6` | Take `48` from `84` to leave `36`. | |||||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | ||||||||
`1` | `2` | `0` | `0` | `50` | |||||||
`8` | `4` | ||||||||||
`4` | `8` | `2` | |||||||||
`3` | `6` | Subtract `1xx24` and add `1` to the running total. | |||||||||
`1xx24rArr` | `2` | `4` | `1` | ||||||||
`24` | `3` | `6` | `8` | `4` | |||||||
`2` | `4` | `0` | `0` | `100` | |||||||
`1` | `2` | `8` | `4` | ||||||||
`1` | `2` | `0` | `0` | `50` | |||||||
`8` | `4` | ||||||||||
`4` | `8` | `2` | |||||||||
`3` | `6` | Take `24` from `36` to leave `12`. | |||||||||
Take away to give: |
`2` | `4` | `1` | Add the running totals on the right. | |||||||
`1` | `2` | `153` | |||||||||
Answer: `3684div24=153` remainder `12`
Answer: `3684div24=153` remainder `12`
Example 4
`4673div15`
`15` | `4` | `6` | `7` | `3` | ||||
`1` | `5` | `0` | `0` | `100` | ||||
`3` | `1` | `7` | `3` | |||||
`1` | `5` | `0` | `0` | `100` | ||||
`1` | `6` | `7` | `3` | |||||
`1` | `5` | `0` | `0` | `100` | ||||
`1` | `7` | `3` | ||||||
`1` | `5` | `0` | `10` | |||||
`2` | `3` | |||||||
`1` | `5` | `1` | ||||||
`8` | `311` |
To see every step broken down
Common core division step by step
Example 4
`4673div15`
`15` | `4` | `6` | `7` | `3` | At first put `15` in front of a division sign and the `4673` inside just as the traditional method. | ||||||
`15` | `4` | `6` | `7` | `3` | But unlike the traditional method we subtract easy amounts in small chunks. Start with `15xx100=1500` and keep a running total on the right. | ||||||
`15xx100` | `1` | `5` | `0` | `0` | `100` | ||||||
`15` | `4` | `6` | `7` | `3` | |||||||
Take away to give: |
`1` | `5` | `0` | `0` | `100` | ||||||
`3` | `1` | `7` | `3` | Take `1500` away from `4673` | |||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | Subtract `15xx100` again and add `100` to the running total on the right. | ||||||
`3` | `1` | `7` | `3` | ||||||||
`15xx100` again | `1` | `5` | `0` | `0` | `100` | ||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
Take away to give: |
`1` | `5` | `0` | `0` | `100` | Take `1500` away from `3173` | |||||
`1` | `6` | `7` | `3` | ||||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | Subtract `15xx100` again and add `100` to the running total on the right. | ||||||
`1` | `6` | `7` | `3` | ||||||||
`15xx100` again | `1` | `5` | `0` | `0` | `100` | ||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `6` | `7` | `3` | ||||||||
Take away to give: |
`1` | `5` | `0` | `0` | `100` | ||||||
`1` | `7` | `3` | Take `1500` away from `1673` | ||||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `6` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `7` | `3` | Subtract `15xx10` and add `10` to the running total on the right. | ||||||||
`15xx10` | `1` | `5` | `0` | `10` | |||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `6` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `7` | `3` | |||||||||
Take away to give: |
`1` | `5` | `0` | `10` | Take `150` away from `173` | ||||||
`2` | `3` | ||||||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `6` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `7` | `3` | |||||||||
`1` | `5` | `0` | `10` | Subtract `15xx1` and add `1` to the running total on the right. | |||||||
`2` | `3` | ||||||||||
`15xx1` | `1` | `5` | `1` | ||||||||
`15` | `4` | `6` | `7` | `3` | |||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`3` | `1` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | Take `15` from `23` and it leaves `8` which is less than `15`, and so is the remainder. | ||||||
`1` | `6` | `7` | `3` | ||||||||
`1` | `5` | `0` | `0` | `100` | |||||||
`1` | `7` | `3` | |||||||||
`1` | `5` | `0` | `10` | Add up the running totals on the right to give the final answer less the remainder. | |||||||
`2` | `3` | ||||||||||
Take away to give: |
`1` | `5` | `1` | ||||||||
`8` | `311` | ||||||||||
Answer: `4673div15=311` remainder `8`
Answer: `4673div15=311` remainder `8`