turning point of a parabola (method 2)
To find the turning point of a parabola use the formula
`x=(-b)/(2a)`
Then put the value of `x` back into the quadratic and you will be able to find the coordinate of `y` on the turning point.
Example 1
Find the turning point of
`x^2-6x+8=y`
use the formula `x=(-b)/(2a)`
Remember that the general formula for a quadratic is
`ax^2+bx+c=y`
`x=(-(-6))/(2times1)=(6)/(2)=3`
`x=3`
Now put the value of `x=3` back into the quadratic equation.
`x^2-6x+8=y`
`3^2-6`x`3+8=y`
`9-18+8=y`
`y=-1`
Example 2
Find the turning point of
`y=(x+3)^2+5`
Use the formula `x=(-b)/(2a)`
Remembering that the general formula for a quadratic is
`ax^2+bx+c=y`
So we first must turn `y=(x+3)^2+5` into the above format
`y=(x+3)(x+3)+5`
`y=x^2+3x+3x+9+5`
`y=x^2+6x+14`
Now using `x=(-b)/(2a)`
`x=(-6)/(2times1)`
`x=-3`
Now put the value of `x=3` back into the quadratic equation
`y=(-3)^2+6(-3)+14`
`y=9-18+14`
`y=+5`
The turning point occurs at
`x=-3` and `y=5`
or `(-3,5)`