Mammoth Memory

Using the standard deviation formula

The standard deviation formula is:

Standard deviation =σ=Σ(x-ˉx)2n-1

 

For any set of values to find the standard deviation you should:

1.  Find the mean (of all the numbers) =ˉx

2.  Subtract the mean (from each number) =x-ˉx

3.  Square the result (of each of the above) =(x-ˉx)2

4.  Add the results up (Add) =(x-ˉx)2

5.  Divide (the result) by the number of data values minus one =(x-ˉx)2n-1

6.  Take the square root of the result =(x-ˉx)2n-1

 

Example 1

What is the standard deviation for the following set of data?

15, 15, 15, 14, 16

 

The process is as follows:

 

i.  Find the mean:  15+15+15+14+165=755=15

 

 

ii  Subtract the mean from each of the data points:

15-15

15-15

15-15

14-15

16-15

0

0

0

-1

1


iii.  Square the result:

02=0

02=0

02=0

 -12=1

 12=1

 

iv.  Add the results up:

      0+0+0+1+1=2

 

v.  Divide by the number of data points less one. 

Therefore  25-1=24=0.5

 

vi.  Square root the result:

0.5=0.707

 

Answer:

The standard deviation for the above data = 0.707

That is 68% of all the data is within 0.707 of 15.

 

Example 2

What is the standard deviation for the following set of data?

     2, 7, 14, 22, 30.

 

The process is as follows:

i.   Find the mean:  2+7+14+22+305=755=15

 

ii.  Subtract the mean from each of the data points:

2-15 7-15 14-15 22-15 30-15
-13 -8 -1 7 15

 

 

 iii.  Square the result:

-132=169 -82=64 -12=1 72=49 152=225

 

iv.  Add the results up:  

169+64+1+49+225=508

 

v.   Divide by the number of data points less one.

5085-1=5084=127

 

vi.  Square root the result:  

127=11.3

 

Answer:

The standard deviation for the above set of data = 11.3

That is 68% of all the data is within 11.3 of 15.