Working out the critical angle
The critical angle (where `theta\ \o\u\t=90^circ`) can be worked out for different media using the following process.
Use
`sin\ \i\n\theta=1/(n(i\n))`
because
Remember FAST SOFA (slow in fast out away from the normal line)
and remember
`(sin\ \i\n\theta)/(sin\ \o\u\t\theta)=(n\ \(o\u\t))/(n\ \(i\n))`
but because `theta\ \o\u\t` is at `90^circ` `(sin90=1)` and `n\ \o\u\t` is 1 (for air) . . .
. . . the formula becomes
`(sin\ \i\n\theta)/1=1/(n\ \(i\n))`
and simplified
`sin\ \i\n\theta=1/(n\ \(i\n))`
Water to air
(water `n=1.3`)
`sin\ \i\n\theta=1/1.3=0.769`
`theta=sin^-1\0.769`
`theta=50.26~~50^circ`
Glass to air
(Glass `n=1.5`)
`sin\ \i\n\theta=1/1.5=0.66dot 6`
`theta=sin^-1\0.66dot 6`
`theta=41.81~~42^circ`
Diamond to air
(Diamond `n=2.417`)
`sin\ \i\n\theta=1/2.417=0.4137`
`theta=sin^-1\0.4137`
`theta=24.44~~24^circ`
Conclusion
The critical angle for
Water to air | `~~50^circ` | ||
Glass to air | `~~42^circ` | ||
Diamond to air | `~~24^circ` |



