Mammoth Memory

Completing the square - example 3

Complete the square   2x2-7x+6=0

NOTE:

The coefficient (or number) in front of the x2 must be a one.

So divide both sides by 2

2x22-7x2+62=02

x2-(72)x+3=0

Remember

Complete the square and split the square into quarters using x square

 

Fill the square in with the next term

Is the same as

This table is the same as the one above

Fill in the table

Fill in the table multiplying the y axis by the x axis

Is the same as

This table will mean the same thing as the one above

NOTE:

This is the same as (x-74)2

 

If you add up each area we get:

x2-74x-74x+4916

x2-2×74x+4916

x2-72x+4916

x2-72x+3116

 

Originally we had   x2-72x+3=0

We now have         x2-72x+3116=0

 

Always plot this on a number line

Use the number line to work out the difference between the original number and the new number

The number line will help you remember

Original -   New number

3-3116=-116    (We need to -116  )

 

So                         x2-72x+3=0

Is the same as

(x-74)2-116=0

(x-74)2=116

x-74=±116

 

(Don't forget the root of anything can be + or -)

x-74=±14

x=74±14

x=74+14   or  x=74-14

x=84   or  64

x=2   or  112

 

Now check

2x2-7x+6=0

If x=2              2×22-7×2+6=0

8-14+6=0

 

If x=112         2×(32)2-7×(32)+6=0

2×(94)-212+6=0

184-212+6=0

424-1012+6=0

412-1012+6=0   Which is correct

Answer:

The roots of 2x2-7x+6=0   are  x=2  or  x=112