Mammoth Memory

Difficult examples

1.  Simplify

48 

The first thing you should attempt is to rationalise the denominator.

48=48×88=48×88=488

So we have rationalised the denominator

i.e.

48=488

But we can go further

488=4×88=82

But now we can also simplify square roots

Simplify  8

Write down what we know

2=4,    3=9,    4=16

5=25,  6=36,  7=49

8=4×2

Try something we know using 9

9×4=36=6 

Is that the same as

9×4=3×2=6 

Yes it is

Therefore 4×2=4×2

               4×2=2×2

To finish

82=2×22=2  

Answer:  48=2

 

2.  Simplify a3

Try something we know using 9

We know 92 is the same as

9×9 

i.e. both = 9 

Therefore  93=9×9×9

Is the same as

=92×9=99

Therefore  =a3 

Is the same as

=a2×a=aa

Answer:  a3=aa

 

3.  Rationalise the denominator

295

Rationalise the denominator = Turn the surd of the denominator into a fraction.

295=29×5×55=29×55=2455 

We have rationalised the denominator but we can go further

2455=2545

Answer:  295=2545 

 

4.  Simplify

 (3+2)(3-2) 

Multiply out

Multiply this surd example

=3×3+3×(-2)+3×2-2×2 

=9-32+32-2×2 

=9-32+32-4  

=9-2    

=7     

Answer: = 7

 

5.  Simplify

(x+y)2 

Multiply out

Give this a go, no numbers needed, lower tier students this is your most testing example 

Answer:  

=x2+xy+xy+y×y 

=x2+2xy+y×y 

=x2+2xy+y2 

=x2+2xy+y 

Answer:  =x2+2xy+y 

 

6.  Simplify

 (x+y)(x-y) 

Multiply out

Give this a go, no numbers needed, lower tier students this is your hardest example

=x2-xy+xy-y×y 

=x2-xy+xy-y2 

=x2-y

Answer: =x2-y 

 

 7.  Simplify

62+18 

First simplify

 18 

Write down what we know

2=4,    3=9,    4=16

5=25,  6=36,  7=49

The biggest square that divides into 18 is 9.

Therefore 18=2×9 

Try something we know using  9 

4×9=36=6

Is that the same as

4×9=3×2=6  

Yes it is

Therefore 2×9=2×9 

               2×9=3×2 

So now getting back to the original question

       62+18 

=62+32 

Try something we know using 9 

69+39=6×3+3×3

=18+9=27 

Is that the same as 

(6+3)9=99=9×3=27 

Yes it is

Therefore  62+32 

=(6+3)2 

=92  

Answer:  62+18=92  

 

8.  Simplify

810×515   

8×10×5×15  

8×5×10×15  

 4015×10 

Try something we know using  9  

9×4=3×2=6   

Is that the same as

9×4=36=6   

Yes it is

Therefore 4015×10  

=40×15×10   

=40150

So now simplify

150  

Write down what we know

2=4,   3=9,      4=16

5=25,  6=36,   7=49

8=64,  9=81,  10=100

The biggest square that divides into 150 = 25.   

Therefore 150=3×25=3×25

         3×25=53              

Get back to

40150

This now equals

40×53

Therefore 2003

Answer:  810×515=2003 

 

9.  Simplify

 (56+43)(36-23) 

First multiply out the brackets

Higher tier students give this a go 

56×36-23×56+43×36-23×43 

Working on BIDMAS

Stage 1

Work out  56×36 

Try something we know using 9 

59×39=5×3×3×3

=15×9 

Is that the same as

5×3×9×9=5×3×81

=15×9  

Yes it is

Therefore 5×6×3×6 

 =5×3×6×6 

=1536 

=15×6 

=90 

Stage 2

Work out  -23×56 

Try something we know using  9 

-2×9×5×4

=-2×3×5×2

=-6×10=-60 

Is this the same as

-2×5×9×4

=-10×36

=-10×6=-60  

Yes it is

Therefore -2×3×5×6 

=-2×5×3×6 

=-10×3×6 

=-10×18 

But we can simplify

 18 

Write down what we know

 2=4,   3=9,   4=16

Therefore  18=9×2=9×2

18=3×2

Going back

Therfore -10×18 

 -10×3×2

-302

Stage 3

 43×36

As stage 2

4×3×3×6

4×3×3×6

12×3×6

12×3×6

12×18

We know from stage 2

 18=3×2

Therefore  12×18=12×3×2=362

Stage 4

-23×43

As stage 2

 -2×3×4×3

-2×4×3×3

-8×3×3

-8×9

-8×3

-24

Putting all the stages together:

 90-302+362-24

90+62-24

90-24+62

66+62

Answer:  (56+43)(36-23)

=66+62