Mammoth Memory

How to remember

 Think of `sqrt9`  

If you see surds think 9

“That’s absurd!” (surd) Surely you can remove a square beetroot.” But they couldn’t remove it (cant remove). “We need more lines, perhaps nine.”

 

Surd examples

1.  Add these surds

`sqrt7+4\sqrt7` 

This is really asking us to add `1sqrt7+4sqrt7`

Try something we know in `sqrt9`

`sqrt9+4sqrt9=3+4times3=15`            

Is that the same as

`5sqrt9=15` 

Yes it is

Therefore  `1sqrt7+4sqrt7`

`=5sqrt7`        

                     

2.  Subtract these surds

`5sqrt2-3sqrt2` 

Try something we know in `sqrt9`

`5sqrt9 -3sqrt9`

`=5times3-3times3=15-9=6`

Is that the same as

`(5-3)sqrt9=6` 

Yes it is

Therefore  `5sqrt2-3sqrt2`

`= (5-3)sqrt2`

`= 2sqrt2`

 

 3.  Add

 `4 sqrt2+3sqrt3`

These cannot be added as these surds are not the same.

It’s not in our rules.

 

4.  Work out

`2sqrt2+3sqrt2-sqrt2` 

Try something we know in `sqrt9`

`2sqrt9+3sqrt9-1sqrt9`

`=2times3+3times3-3`

`=6+9-3=12` 

Is that the same as

`(2+3-1)sqrt9=12` 

Yes it is

Therefore  `2sqrt2+3sqrt2-1sqrt2`

`=(2+3-1)sqrt2`

`=4sqrt2`

 

5.  Simplify

 `sqrt8/sqrt2`

Start with what we know

 `sqrt9/sqrt9=3/3=1=sqrt(9/9)` 

Therefore  `sqrt8/sqrt2=sqrt(8/2)=sqrt4=2`

Answer:  `sqrt8/sqrt2=2` 

 

6.  Simplify

 `sqrt2timessqrt3`

Try something we know in `sqrt9`

`sqrt4timessqrt9=2times3=6` 

Is this the same as

`sqrt{4times9}= sqrt36=6` 

Yes it is

Therefore`sqrt2timessqrt3=sqrt{2times3}=sqrt6` 

Answer:  `sqrt2timessqrt3=sqrt6` 

 

7.  Simplify

`sqrt12` 

Start with what we know

`sqrt9timessqrt9=3times3=9`

`=sqrt81=sqrt{9times9}`

With this example we can see

 `sqrt12=sqrt{3times4}=sqrt3 timessqrt4`

`sqrt3timessqrt4=sqrt3times2=2sqrt{3`

Answer:  `sqrt12=2sqrt3`

 

8.  Simplify

`sqrt15/sqrt5` 

Write down what we know

`sqrt9/sqrt9=3/3=1=sqrt(9/9)`

Therefore  `sqrt9/sqrt9=sqrt(9/9)`

Therfore `sqrt15/sqrt5=sqrt(15/5)=sqrt3`

Answer:  `sqrt15/sqrt5=sqrt3` 

 

9.  Simplify

 `2sqrt3+sqrt2-4sqrt3`

Rearrange

`2sqrt3-4sqrt3+sqrt2`

Try something we know

`2timessqrt9-4sqrt9`

`=2times3-4times3=6-12=-6` 

Is that the same as

`(2-4)sqrt9=-2times3=-6` 

Yes it is

Therefore  `2sqrt3-4sqrt3+sqrt2`

 `=(2-4)sqrt3+sqrt2`

 `=-2sqrt3+sqrt2` 

Answer:  `2sqrt3+sqrt2-4sqrt3=-2sqrt3+sqrt2` 

 

10.  Simplify 

`5sqrt2times2sqrt3`

Try something we know in `sqrt9`

`5sqrt9times2sqrt9=5times3times2times3` 

`=15times6=90`

Is this the same as

`5times2sqrt(9times9)=10timessqrt81`

`=10times9=90`

Yes it is

Therefore  `5timessqrt2times2timessqrt3`

`= 5times2timessqrt2timessqrt3`

`= 10timessqrt2timessqrt3`

`= 10timessqrt(2times3)`

`= 10timessqrt6`

Answer:  `5sqrt2times2sqrt3=10sqrt6`

More Info