Using the quadratic formula solver Example 2
Solve `x^2-6x+8=0`
`x=(-b+-sqrt(b^2-4ac))/(2a)`
Therefore `a=1` , `b=-6` & `c=8`
`x=(-(-6)+-sqrt((-6)^2-4times1times8))/(2times1)`
`x=(6+-sqrt(36-32))/2`
`x=(6+-sqrt4)/2`
`x=(6+-2)/2`
`x=(6+2)/2` or `x=(6-2)/2`
`x=8/2` or `x=4/2`
`x=4` or `2`
Check the answer
`x^2-6x+8=0`
If `x=4` `4^2-6times4+8=0`
`16-24+8=0` Which is correct
If `x=2` `2^2-6times2+8=0`
`4-12+8=0` Which is correct
Answer:
The roots of `x^2-6x+8=0` are `x=4` and `x=2`
Quick stetch example 2
`x^2-6x+8=0`
`x=3` | `y=` | `3^2-6times3+8=` | `9-18+8` | `=-1` | |
`x=2` | `y=` | `2^2-6times2+8=` | `4-12+8` | `=0` | |
`x=1` | `y=` | `1^2-6times1+8=` | `1-6+8` | `=3` | |
`x=0` | `y=` | `0^2-6times0+8=` | `0-0+8` | `=8` |
We have found one root as `x=2`