Using the quadratic formula solver Example 5
Solve `x^2+7x+10=0`
`x=(-b+-sqrt(b^2-4ac))/(2a)`
Therefore `a=1` , `b=7` & `c=10`
`x=(-7+-sqrt(7^2-4times1times10))/(2times1)`
`x=(-7+-sqrt(49-40))/2`
`x=(-7+-sqrt9)/2`
`x=(-7+-3)/2`
`x=(-7+3)/2` or `x=(-7-3)/2`
`x=-4/2` or `x=-10/2`
`x=-2` or `x=-5`
Check the answer
`x^2+7x+10=0`
If `x=-2` `(-2)^2+7times(-2)+10=0`
`4-14+10=0` Which is correct
If `x=-5` `(-5)^2+7times(-5)+10=0`
`25-35+10=0` Which is correct
Answer:
The roots of `x^2+7x+10=0` are `x=-2` and `x=-5`
NOTE:
This example has also been used in completing the square examples and factoring quadratics (easy) to show that the roots `-2` and `-5` can be found using any of these methods.
Quick stetch example 5
`x^2+7x+10=0`
`x=2` | `y=` | `2^2-7times2+10=` | `4+14+10` | `=28` | |
`x=1` | `y=` | `1^2-7times1+10=` | `1+7+10` | `=18` | |
`x=0` | `y=` | `0^2-7times0+10=` | `0+0+10` | `=10` | |
`x=-1` | `y=` | `(-1)^2-7times(-1)+10=` | `1-7+10` | `=4` | |
`x=-2` | `y=` | `(-2)^2-7times(-2)+10=` | `4-14+10` | `=0` | |
`x=-3` | `y=` | `(-2)^2-7times(-2)+10=` | `9-21+10` | `=-2` |
We have found one root at `x=-2`