Using the quadratic formula solver Example 4
Solve 2x2-7x+6=0
x=-b±√b2-4ac2a
Therefore a=2 , b=-7 & c=6
x=-(-7)±√(-7)2-4×2×62×2
x=7±√49-484
x=7±√14
x=7±14
x=7+14 or x=7-14
x=84 or x=64
x=2 or x=112
Now check your answer
2x2-7x+6=0
If x=2 2×22-7×2+6=0
8-14+6=0 Which is correct
If x=112 2×(32)2-7×(32)+6=0
2×(94)-212+6=0
184-212+6=0
424-1012+6=0
412-1012+6=0 Which is correct
Answer:
The roots of 2x2-7x+6=0 are x=2 or x=112
Quick stetch example 4
2x2-7x+6=0
x=3 | y= | 2×32-7×3+6= | 18-21+6 | =3 | |
x=2 | y= | 2×22-7×2+6= | 8-14+6 | =0 | |
x=1 | y= | 2×12-7×1+6= | 2-7+6 | =1 | |
x=0 | y= | 2×02-7×0+6= | 0-0+6 | =6 |
We have found one root as x=2



