Decimal to fraction - Repeating
If you have a repeating decimal it is the division of any number by `9` that makes it repeat.
i.e. `1div9=1/9=0.111dot1`
`2div9=2/9=0.222dot2`
`3div9=3/9=0.333dot3`
I keep seeing nines everywhere doctor.
For repeating decimals think
`0` | `*` | `1` | `1` | `1` | `1` | `1` | etc | |
`darr` | `darr` | `darr` | `darr` | `darr` | ||||
`1/9` |
`1/90` |
`1/900` |
`1/9000` |
`1/(90,000)` |
Or
`0` | `*` | `2` | `2` | `2` | `2` | `2` | etc | |
`darr` | `darr` | `darr` | `darr` | `darr` | ||||
`2/9` | `2/90` | `2/900` | `2/9000` | `2/(90,000)` |
Or
`0` | `*` | `3` | `3` | `3` | `3` | `3` | etc | |
`darr` | `darr` | `darr` | `darr` | `darr` | ||||
`3/9` | `3/90` | `3/900` | `3/9000` | `3/(90,000)` |
Find where it starts repeating and the number it repeats
Example 1
Convert `0.dot2` to a fraction
`0.dot2=0.222222` recurring.
Remember:
`0` | `*` | `2` | `2` | `2` | `2` |
`darr` | |||||
`2/9` |
Therefore
`0.dot2=2/9`
Now check on a calculator `2div9=0.22dot2`
Example 2
Convert `0.0dot2` to a fraction
`0.0dot2=0.0222222` recurring.
Remember:
`0` | `*` | `2` | `2` |
`darr` | `darr` | ||
`2/9` | `2/90` |
Therefore
`0.0dot2=2/90=1/45`
Now check on a calculator `2div90=0.022dot2`
Example 3
Convert `0.000222dot2` to a fraction
`0.000dot2=0.000222222` recurring.
Remember:
`0` | `*` | `2` | `2` | `2` | `2` |
`darr` | `darr` | `darr` | `darr` | ||
`2/9` | `2/90` | `2/900` | `2/(9,000)` |
Therefore
`0.dot2=2/(9,000)=1/(4,500)`
Now check on a calculator `2div9,000=0.00022dot2`