Mammoth Memory

Parabolas - Double the distance from the `y` axis

`y=(1/2x)^2`  - Doubles the distance from the `y`  axis.

To prove this, plot the graph.

Try different values of `x`

`x=4`   `y=(1/2times4)^2` `=(2)^2` `=4`
`x=3`   `y=(1/2times3)^2` `=(1.5)^2` `=2.25`
`x=2`   `y=(1/2times2)^2` `=(1)^2` `=1`
`x=1`   `y=(1/2times1)^2` `=(1/2)^2` `=0.25`
`x=0`   `y=(1/2times0)^2` `=(0)^2` `=0`
`x=-1`   `y=(1/2times(-1))^2` `=(-1/2)^2` `=0.25`
`x=-2`   `y=(1/2times(-2))^2` `=(-1)^2` `=1`
`x=-3`   `y=(1/2times(-3))^2` `=(-1.5)^2` `=2.25`
`x=-4`   `y=(1/2times(-4))^2` `=(-2)^2` `=4`

To reduce a parabola you need to double the distance from the y axis 

Notice the parabola is double the distance from the `y`  axis.

Notice the doubled distance of the example on the graph

 

 

 

More Info