Mammoth Memory

Rotating simple parabolas

Rotating `y=x^2` by 90° clockwise or anticlockwise you have to remember.

Rotate `y=x^2`        clockwise       `y=sqrtx`
Rotate `y=x^2`    anticlockwise    `y =sqrt(-x)`

So first plot `y=x^2`

Try different values of `x`

`x=3`   `y=3^2` `=9`
`x=2`   `y=2^2` `=4`
`x=1`   `y=1^2` `=1`
`x=0`   `y=0^2` `=0`
`x=-1`   `y=(-1)^2` `=1`
`x=-2`   `y=(-2)^2` `=4`
`x=-3`   `y=(-3)^2` `=9`

 

And we plot this as

Draw out the famous parabola to start to rotate it

 

Now plot `y=sqrtx`

try different values of `x`

`x=0`   `y=sqrt0=0`  
`x=1`   `y=sqrt1=+-1` `=+1\ \ or\ -1`
`x=4`   `y=sqrt4=+-2` `=+2\ \ or\ -2`
`x=9`   `y=sqrt9=+-3` `=+3\ \ or\ -3`

Now rotate the parabola clockwise remembering y=?x as we go

 

Now plot `y=sqrt-x`

try different values of `x`

`x=0`   `y=sqrt(-1times0)=0`  
`x=-1`   `y=sqrt(-1times-1)=sqrt1` `=+1\ \ or\ -1`
`x=-4`   `y=sqrt(-1times-4)=sqrt4` `=+2\ \ or\ -2`
`x=-9`   `y=sqrt(-1times-9)=sqrt9` `=+3\ \ or\ -3`

 

Now plot this against the original graph. 

Now rotate the parabola anticlockwise remembering y=?-x as we go

 

More Info