Mammoth Memory

Translating parabolas

If you translate (slide) a parabola there are four elements you need to remember:

Start with the most famous parabola.

`y=x^2`

 

1.  `y=x^2+1`          Goes up  `uarr`         (Shifts the parabola up)

2.  `y=x^2-1`          Goes down  `darr`    (Shifts the parabola down)

3.  `y=(x+1)^2`       Goes left  `larr`      (Shifts the parabola to the left)

4.  `y=(x-1)^2`       Goes right  `rarr`    (Shifts the parabola to the right)

 

How do you remember translating parabolas:

Draw a diagonal line as in a graph

To start with draw a diagonal line of a graph

Then write

Write up above down

Then write

Up and left is positive, down and right is minus

This should remind you.

UP `+1`   `y=x^2+1`
Down `-1`   `y=x^2-1`
Right `(-1)`   `y=(x-1)^2`
Left `(+1)`   `y=(x+1)^2`

 

The results would be as the following examples:

 

Example 1

`y=x^2+1`                or  Up `+1`

And we can prove this or further help to remember this by plotting the graph out as follows:

`x=3`   `y=3^2+1` `=9+1` `=10`
`x=2`   `y=2^2+1` `=4+1` `=5`
`x=1`   `y=1^2+1` `=1+1` `=2`
`x=0`   `y=0^2+1` `=0+1` `=1`
`x=-1`   `y=(-1)^2+1` `=1+1` `=2`
`x=-2`   `y=(-2)^2+1` `=4+1` `=5`
`x=-3`   `y=(-3)^2+1` `=9+1` `=10`

Transition a parabola down example 1

 

 The parabola has been translated by `((0),(1))`

UP `+1\ \ uarr`

 

 

Example 2

`y=x^2-1`                   or  Down `-1`

Again we can prove this or further help to remember this by plotting the graph as follows:

`x=3`   `y=3^2-1` `=9-1` `=8`
`x=2`   `y=2^2-1` `=4-1` `=3`
`x=1`   `y=1^2-1` `=1-1` `=0`
`x=0`   `y=0^2-1` `=0-1` `=-1`
`x=-1`   `y=(-1)^2-1` `=1-1` `=0`
`x=-2`   `y=(-2)^2-1` `=4-1` `=3`
`x=-3`   `y=(-3)^2-1` `=9-1` `=8`

Transition a parabola down example 2

 

 

The parabola has been translated by `((0),(1))`

Down `-1\ \ darr`

 

 

Example 3

`y=(x+1)^2`                     or  Left `larr`

 

NOTE:

See how we added brackets around the `x`  value and added `+1`

 

We can prove this or further help remember this by plotting the graph as follows:

`x=3`   `y=(3+1)^2` `=4^2` `=16`
`x=2`   `y=(2+1)^2` `=3^2` `=9`
`x=1`   `y=(1+1)^2` `=2^2` `=4`
`x=0`   `y=(0+1)^2` `=1^2` `=1`
`x=-1`   `y=(-1+1)^2` `=0^2` `=0`
`x=-2`   `y=(-2+1)^2` `=(-1)^2` `=1`
`x=-3`   `y=(-3+1)^2` `=(-2)^2` `=4`
`x=-4`   `y=(-4+1)^2` `=(-3)^2` `=9`

Transition a parabola to the left example 3

The parabola has been translated by `((-1),(0))`

Left `-1\ \ larr`

 

 

Example 4

`y=(x-1)^2`                    or  Right `rarr`

 

NOTE:

See how we added brackets around the `x`  value and subtracted `1`

 

We can prove this or further help remember this by plotting the graph as follows:

`x=4`   `y=(4-1)^2` `=3^2` `=9`
`x=3`   `y=(3-1)^2` `=2^2` `=4`
`x=2`   `y=(2-1)^2` `=1^2` `=1`
`x=1`   `y=(1-1)^2` `=0^2` `=0`
`x=0`   `y=(0-1)^2` `=(-1)^2` `=1`
`x=-1`   `y=(-1-1)^2` `=(-2)^2` `=4`
`x=-2`   `y=(-2-1)^2` `=(-3)^2`  `=9`
`x=-3`   `y=(-3-1)^2` `=(-4)^2` `=16`

 Transition a parabola to the right example 4

The parabola has been translated by `((1),(0))`

Right `+1\ \ rarr`

 

 

More Info