Mammoth Memory

Indices law - law 3

`a^(1/n)=\rootna`

A fraction is a root

To remember this try simple numbers you know first.

We know `4^(1/2)=sqrt4=2`

We can then apply this to all other examples:

 

Example 1               

`10\^(1/2)=\root2\10=3.162`

 

Example 2                             

`9\^(1/2)=\root2\9=3`   `(3xx3 =9)`

The second root of `9=3`        

(The second root is also known as the square root)

 

Example 3                       

`27\^(1/3)=\root3\27=3`       `(3xx3xx3=27)`

The third root of `27=3`         

(The third root is also known as the cube root)

 

Example 4

`8\^(2/3)`

Because     `1/2xx1/2=1/4`
then `2/3=1/3xx2/1`
or `1/3xx2`

 

`8\^(2/3)=8\^(1/3xx2)`

Law 5 states    `a\^(mn)=(a\^(m))\^(n)`

`8\^(2/3)=8\^(1/3xx2)=(8\^(1/3))\^(2)=(\root3\8)\^(2)` 

`(8\^(1/3))\^(2)=(\root3\8)\^(2)=2\^(2)=4` 

More Info