Indices law - law 5 - Raising one power to another power
`(a^m)^n=a^(mn)`
To remember try simple numbers you know first i.e.
First part `(a^m)^n`
`(2^2)^2`
`2^2=4`
`(2^2)^2=(4)^2`
`(4)^2=16`
`(2^2)^2=16`
Second part `a^(mn)`
`2^(2\times2)`
`2^4`
`2\times2\times2\times2=16`
`2^(2\times2)=16`
So yes `(a^m)^n=a^(mn)`
Example
Simplify `(x^3)^2`
Try simple numbers you know first
`(2^3)^2`
`=(2\times2\times2)^2`
`=(8)^2`
`=64`
Ask yourself is this the same as `2^6`
`2^6 = 2\times2\times2\times2\times2\times2`
`2^6=64`
So yes `(2^3)^2=2^6`
Therefore `(x^3)^2=x^6`
Answer:
`(x^3)^2=x^6`